
1

Teaching Security Engineering Principles

Cynthia E. Irvine and Timothy Levin
Computer Science Department, Naval Postgraduate School, Monterey, California

Abstract: The design and construction of secure systems cannot be entirely captured in
textbooks or class notes, but must be taught as an art which is learned through
apprenticeship and practice. This paper describes a course in Secure Systems
that uses the Flaw Hypothesis Methodology for penetration testing as a vehicle
for motivating and teaching students fundamental principles of security
engineering.

Key words: Security Engineering, Education, Principles, Flaw Hypothesis Methodology

1. INTRODUCTION

At our institution a course entitled “Secure Systems” is taught on an
annual basis. It is an advanced graduate-level course intended to teach
students about the design and implementation of secure platforms. The
catalog course description is given below.

The course covers implementation of protection for both monolithic and
distributed secure computer systems. The importance of system
architecture to assurance methodologies for security kernels is
emphasized. Topics will include the use of protection hardware, the
implementation of virtual machines through the effective use of memory
management techniques including segmentation and paging,
synchronization mechanisms, critical sections, software engineering
methodologies as applied to the development of secure computer
systems, and configuration management techniques. Critical topics in
database security will be discussed.

The course covers a wide range of security engineering principles as well
as mechanisms for their realization. As with many courses, students learn

2 Cynthia E. Irvine and Timothy Levin

best when they are fully engaged in the topic. To facilitate this engagement,
laboratory activities are particularly useful. Our view is that security
engineering is relatively immature compared to some other engineering
disciplines, and, as a result, may be best taught as a hands-on art form rather
than an abstract science.

Laboratory exercises in secure system construction could take several
forms. First, the instructor could devise a series of activities that are
completely hypothetical with no connection to a real system whatsoever.
This may not be particularly realistic and may have both the appearance and
pedagogical value of a toy. Another approach would be to inspect a secure
system. This would require access to source code for a secure system that
had been constructed using the principles the instructor wished to convey.
Unfortunately, the known systems that fall into this category are proprietary.
A third path would be to add security to an open source system. This could
work, but the instructor may need to take great pains to ensure that students
distinguish between principle-based security engineering and undisciplined
system development that can emerge from a system built using ad hoc
construction methods. Finally, students can examine a demonstrably flawed
system and study what principles should have been applied in design and
implementation. In this case students can examine either a proprietary or an
open source system, but instead of constructing the system they deconstruct
it.

For our course we chose the last approach. Instead of sending students
off to attempt ad hoc penetrations of the target system, use of the Flaw
Hypothesis Methodology was employed.

The objective of this paper is to describe the principles we teach in our
lectures and to describe how a complementary laboratory exercise based
upon the use of a penetration exercise based upon the Flaw Hypothesis
Methodology was created. We note that, while the subject course
concentrates primarily on the design of secure operating systems, the
deconstructive pedagogic techniques described here can be used for teaching
design of all sorts of secure systems, including networks and database
management systems.

The remainder of this paper is organized as follows. Section 2 provides a
review of the major principles addressed in the course. In Section 3 an
outline of the motivation for, and objectives of, penetration testing in a
security engineering context is sketched. The application of a penetration
exercise in the context of our course is described in Section 4. A brief
discussion of our activities is given in Section 5

Teaching Security Engineering Principles 3

2. PRINCIPLES OF SECURE SYSTEMS

The objective of the class was to teach principles of secure systems.
These principles were derived from a combination of experience and the
literature [5, 1, 8, 9] and include:

Modularity and layering
At the highest level, modularity and layering are engineering disciplines,

the application of which result in systems whose structure is
comprehendible. Division of code into well-formed modules provides the
opportunity to isolate functions and related data structures into compact
logical units. Layering allows the relationships of these units to be better
understood, so that dependencies are clear, and undesired logical looping can
be avoided. A system built with assurance against internal looping will be
less error prone and more resistant to denial of service attacks.

Economy of mechanism
This principle means that the designer should keep the system design as

simple and small as possible. A small and simple design will be more
understandable, more analyzable, and less prone to errors.

Complete - always invoked
This principle means that a strong mechanism must be effective against

all parties and under all circumstances. There are no superusers for whom
the mechanism does not apply, and it cannot be tampered with to undermine
its effectiveness.

Non-bypassable
If a protection mechanism can be avoided, for example by using an

alternate interface to access an object, then the mechanisms will be
ineffective, even if it is always present.

Least Privilege
Each entity is given only enough privilege to complete the job at hand

and not privileges that might go far beyond those associated with the task.
Fail-safe defaults
When the system is initialized it comes up in a secure state and if the

system crashes or an error occurs, the system does not enter a state in which
protection mechanisms are no longer in effect. If the user does not specify
the security characteristics for an operation, either the system will use secure
defaults or it will not perform the operation.

No Security through obscurity
Although a system may not be open source, the foundations of its

security should be based upon the quality of its design and the rigor of its
engineering process. Since it is hard to know whether or not an adversary
knows the details of a protection mechanism, it is hard to know when a
mechanism ceases to be effective that has been secured through obscurity.

4 Cynthia E. Irvine and Timothy Levin

Usability
Secure systems should be appealing to potential users. If security

mechanisms are frustrating or difficult to use, then they will be disabled or
avoided.

Attention to shared variables and resources
As the popularity of timing attacks on smart cards and other devices

intended to store secrets continues, students must be reminded that design of
secure systems requires attention to the adversary's ability to monitor global
variables and shared resources [11].

Separation of Privilege
In many circumstances, the division of a privilege between multiple

parties will be able to decrease the likelyhood of that privilege being abused.
For example, with a dual-keyed safe deposit box, neither the banker nor the
customer can access the box surreptitiously.

Privileged Resources and tools
The commands and resources utilized by the control systems should not

be available to general users. For example, certain memory locations and
processor instructions are reserved for use by the operating system, resulting
in a two state architecture for many modern processors. Furthermore, the
means through which a process gains entry to the privileged state needs to be
strictly controlled.

Per-user resource allocation
In multi-user systems, the resources allocated to one user must be

protected from access by another user. Separate process address spaces are
an example of the application of this principle.

Information Hiding and Encapsulation
The principle of information hiding means that access to a set of related

data is managed by a minimal number of functions. Ideally, these functions
reside within the same module. The functions should not be dependent on
the internal representation of the data.

Analysis
The engineer must develop system security requirements by applying a

threat model. The attacker may view the system from an entirely different
perspective than the designer and may easily find simple ways to bypass
security. Systems must be examined to find the weakest link in the chain of
security mechanisms, for this is the avenue of attack that will be most
attractive to the adversary. Analysis of the work factor needed to exploit the
weakest link is needed. The notion of work factor analysis is amply
demonstrated in cryptography, where cryptanalytic attacks are found to be
more attractive than brute force attacks on the key space. Time-of-check-to-
time-of-use (TOCTOU) attacks are common and careful design and analysis

Teaching Security Engineering Principles 5

are required to construct a system that does not present TOCTOU
vulnerabilities.

Engineering Discipline
A course objective is to teach students methodological development

processes, such that the other principles can be applied in a careful and
complete manner. For example, in the absence of strongly typed
programming languages, engineers need to treat data consistently to have
semantically clear data access methods. The mere use of object-oriented
approaches and object-based languages does not guarantee good engineering
(e.g., information hiding); it must be taught and practiced.

In this class the students are taught not only the theoretical notions
associated with these principles, but also how they are applied in real
systems. The technology of secure computer construction is fairly immature
in comparison to such fields as residential home construction, or industrial
bridge construction. In those fields, there are “effective procedures” for
applying the body of engineering principles to known problems.
Furthermore, the construction-industry technologies are mature enough that
most new problems can be adapted to the principles and existing solution
frameworks in a straightforward manner. The result is that consumers are
highly confident that new constructions are “safe.” Secure computer
technologies are not that mature. In general the security engineering
community does not have “effective procedures” for applying our principles
to standard or new security problems, and consumer confidence in the
security of new products is generally low. Instead of teaching rote
procedures for system construction we rely on apprenticeship and experience
to pass along the methods for applying our principles. In the absence of
generalized effective procedures for secure system design and construction
we recognize that security engineering is a form of art, best taught through
hands-on experience.

A good jazz musician will tacitly learn music theory and the art of
playing. The music student may take lessons for years and never be asked to
study music theory as a separate subject. Yet without some internalization of
music theory, the musician is a mere mechanic and can neither create new
music nor understand the nuances intended by other composers. Even though
music theory may not be explicitly taught, it is impossible to improvise
effectively without an understanding of how music is constructed and the
interrelationships between the notes in major and minor keys. In contrast, if
a musician studied only music theory and never practiced an instrument or
improvization, then how could music be created?

Security engineering is similar. A secure system cannot be built by
staying at the desk and studying theory and abstract systems. Instead those
ideas must be practiced on real systems. Both the desk learning and security

6 Cynthia E. Irvine and Timothy Levin

engineering benefit from pedagogical guidance. The teacher can guide and
accelerate the student through the material and can provide useful graded
materials for practicing the security engineering art.

A number of readings, including those previously cited, contributed to
the students' appreciation of security engineering [10, 2, 12].

3. FLAW HYPOTHESIS METHODOLOGY

The Flaw Hypothesis Methodology was developed by Linde [6] and has
been described in further detail by Weissman [14, 15]. It provides an
organized approach to testing a system for possible errors in implementation
and is intended to complement other aspects of developmental assurance.
The major objectives of flaw testing are to provide assurance of correct
functional behavior and to examine the penetration resistance of the system.
This testing takes place during the last stages of system development (and is
not conducted by customers after the system has been fielded.) To date, the
FHM has been shown to be a useful framework for finding system flaws, yet
it is not a formula for completeness: the transitive closure of all of the
potential flaws in the system cannot be achieved using this or perhaps any
other approach.

The problems revealed by testing include: design and implementation
errors, user errors, and configuration errors. Design and implementation
errors can have a tremendous impact on the system if discovered after it has
been fielded. They can be both difficult and expensive to remedy. If
documentation and interfaces are inadequate, user errors can render the
system vulnerable to attack. Similarly, configuration errors can result from a
number of factors and may be easily remedied through improved interfaces,
defaults, and documentation. Penetration testing is employed and
complements functional testing, which is insufficient for secure systems.
Functional testing determines whether a particular requirement is met and if
the interfaces and execution are correct. It is not complete, does not test
extreme conditions, nor does it reveal anything about hidden functionality,
bad configurations or usage. Penetration testing is not needed to reveal the
types of flaws found through functional testing.

Penetration testing involves an exercise in attempting to circumvent the
security features of the system. Penetrators “do everything wrong” and think
“out of the box” and destructively. They assume the worst of the system
developers. They ignore the system documentation guidance and warnings
regarding parameter limits, use of functions, and configuration. They exploit
design weaknesses and explore the vulnerabilities of rarely used functions.

The Flaw Hypothesis Methodology consists of six phases.

Teaching Security Engineering Principles 7

Definition
During this phase the penetration team determines the purpose and goals

of the penetration exercise. They attempt to understand why they are
conducting the exercise. These objectives might include one or more of the
following: discovery of interesting threats to the system, support a risk
assessment of the system; categorization of attacks relative to security
objectives such as confidentiality, integrity and availability; categorization of
potential attackers; and enumeration of possible points of entry used to
mount an attack on the system.

The team must also determine what will count as success. A penetration
exercise can continue forever, so that before starting, the team must define a
stopping point. This may be in terms of flaws discovered or time invested,
for example.

Background Study
At this point the penetration team attempt to understand the target

system. This will enhance the likelihood of making a valid flaw hypothesis.
The team will amass as much system documentation as possible, examining
manuals, code, reports, papers, etc. Each team member will choose a
particular component and become a “team expert” in that area. During this
phase, the team is already thinking like adversaries asking “What if?”
questions and searching for documented warnings that one “should not” do
something to the system.

Brainstorming and Hypothesis Generation
To start this phase of the penetration exercise, each team member makes

a presentation to the entire team about his or her area of expertise. This is
usually in the form of an interactive lecture. During these lectures and
subsequent brainstorming sessions, team members must refrain from
judgemental comments and promote a free exchange of ideas. To ensure that
no one is left out members should be regularly polled for their opinions. The
search for system errors has started and the team will look for errors in a
variety of areas: software, firmware, and hardware. They will seek design
errors, implementation errors, interface flaws, and configuration errors.

These brainstorming activities result in the generation of flaw
hypotheses, often stated as a set of conditions, interface functions, and
inputs, that will result in exploitation of a system flaw. The flaw may be
minor, however if it is beaded with other flaws, the ultimate result may be a
system penetration.

As the flaw hypotheses are generated a flaw hypothesis database is
created. Once the database is populated, it is possible for the team to
examine the hypotheses to determine if certain errors can be generalized and
are applicable to other parts of the system. The general types of errors
include I/O control, algorithmic blunders, access control errors,

8 Cynthia E. Irvine and Timothy Levin

undocumented functionality, unintended program or data sharing, and timing
flaws.

The final step for this phase is to prioritize the hypothesized flaws for
subsequent verification.

Hypothesis Verification
Some flaws can be verified through desk checking while others may

require the creation or use of special tools. During this phase team members
pool their talents to explore the various hypothesis. Verification of a flaw
will be recorded in the Flaw Hypothesis Database.

An important part of this phase is frequent interaction with team
members for further brainstorming, hypothesis generation, and hypothesis
reprioritization.

Hypothesis Generalization
During this phase, the team may derive a taxonomy of flaws that appears

to be applicable to the target system. The generalization technique may
permit additional flaw hypotheses associated with a flaw class to be
generated.

Documentation
The last step for the team is to create a report documenting the results of

the penetration exercise. The document will report hypotheses that were
successfully verified as well as those that were not found in the target
system. The team will provide a rationale for the prioritization of hypotheses
for verification. The results of the report may provide guidance to system
developers who may choose to take remedial action. There are ethical
considerations that must be addressed in a penetration exercise: it may not be
wise to broadcast the list of flaws to the newspapers, but instead notification
of responsive vendors or of emergency response teams may be appropriate.

4. EXERCISE IMPLEMENTATION

This section describes our use of a penetration exercise as the laboratory
component for our course on secure systems.

Prerequisites for this course include Operating Systems, Networks and
Introduction to Computer Security. Because the course was not restricted to
computer science students a few students from other curricula enrolled. In
addition, even the computer science students came from varied backgrounds.
Some had undergraduate degrees in electrical or computer engineering,
while others had received undergraduate degrees in somewhat less technical
information systems programs. Careful assessment of student backgrounds
and skills helped to make the laboratory exercise rewarding for the entire
group.

Teaching Security Engineering Principles 9

4.1 Team Effort

The flaw hypothesis methodology permitted the laboratory experience to
be a team effort. Too often work on computers is viewed as the enterprise of
the lone genius. For large systems, this is far from the norm. Major software
and system development projects usually involve a team whose members are
expert in particular areas to contribute various talents to the collective effort.
Through the synergistic interaction of these individuals, team creativity and
productivity is amplified and large, complex systems can be developed.

Unfortunately, many students emerge from undergraduate and graduate
programs with little or no experience in team efforts. In the usual educational
experience, students are often sent off to conduct laboratory and homework
exercises alone or in pairs. To help remedy this shortfall in their educational
experience, the penetration testing exercise was organized as a team effort.

During the first day of class, students were surveyed to determine their
background and skills in computer science and engineering. A sample
questionnaire is illustrated in Table 1. The information provided by the
students allowed the instructor to ensure that each team included members
whose collective skills would be sufficient to carry out the penetration
exercise. It is imperative that the instructor collect enough information to be
able to create well balanced teams.

Students were divided into teams of four or five. Each student was
assigned a subsystem role and was responsible for becoming the local expert
on that particular subsystem of the operating system. These subsystems
included:
– Memory Management
– Process Management
– I/O Subsystems
– File System
– Graphical Interface

In addition each student was assigned a service role in which he or she
provided a functional service to the team. The service roles included:

Tools builder - this individual was responsible for the design and
construction of specialized tools needed by the team for specific penetration
tests. The individual chosen for this role should have experience
programming in both assembly and a high order language.

Report editor - this task involved recording and organizing the material
provided by other team members into a coherent report. The report editor
might also take the role of team leader.

10 Cynthia E. Irvine and Timothy Levin

Table 1. Student Questionnaire

One of the principle activities of this course will be an evaluation of an operating system
using the Flaw Hypothesis Methodology. This work will be conducted by a team working on
NT and other systems in the Computer Security Lab.

Team assignments will be made so that each team has members with appropriate strengths
and talents. This questionnaire is intended to help your instructor make useful assignments.

1. Have you ever programmed in assembly? If so, give us an idea of how much experience
you have in this area

2. Do you know C , C++, or Ada. How much experience do you have?

3. Have you ever used MS Access?

4. Have you ever designed a database?
5. Have you ever administered a Windows NT system?

6. Have you ever administered a system accessed by multiple users? If so, describe.
7. Have you ever managed a software development project involving several designers and

programmers?
8. Do you know how to backup systems?
9. Have you every backed up a system?
10. Have you ever installed a system? Which one(s)?
11. Have you ever been a member of a software development team?
12. Have you used Linux, BSD Unix, or another flavor of Unix?
13. Have you ever installed Linux, BSD Unix or another flavor of Unix?
14. Have you ever installed a Windows system (any kind - 95, 98, NT, etc.)?
15. Are you good at finding the information you are looking for easily on the WWW?
16. Does using the WWW make you feel as if you are going into information overload?
17. Approximately how many e-mail messages are in your “in” box? Approximately how

many folders do you maintain?
18. Do you maintain your bookmarks in a “flat” system or hierarchically?
19. If you downloaded source for a tool, could you compile it and make it run on your home

system (assuming that it was targeted for that system)?
20. Do you like to design software?
21. Do you like to implement software?
22. Do you dislike designing and/or implementing software?
23. What is the longest program you have ever written? Was writing it a satisfying

experience
24. Is there something else you would like to relate that can help the instructor make an

informed team assignment?

Database designer - The Flaw Hypothesis Database was constructed by
the database designer. Background in database design was a useful
prerequisite for this assignment.

Web surfer and tool collector - This individual was required to find
published weaknesses in the target system and existing tools that would help
the team with their penetration efforts. Although the web surfer/tool
collector was not required to be an expert programmer, a sense of what

Teaching Security Engineering Principles 11

constituted a useful tool as opposed to one that would be a waste of time was
needed.

System Administrator - This individual was responsible for the
management and configuration of both the target system and the
development platform used for managing the penetration exercise. Tasks
included system installation, configuration management, backups, and user
administration.

To supplement the readings previously cited, students were asked to
review several classical works on system penetration [3, 4].

4.2 Target System

For the penetration exercise, students examined the Microsoft Windows
CE (WinCE) operating system. WinCE is a small footprint operating system
intended for use in hand-held devices, embedded systems, and as a diskless
system to support thin-client platforms. Because of the proprietary nature of
the system, we were unable to provide each team with source code. Instead
each team had a development system and a target platform. The target
platform was a Windows CE PC obtained from Special Computing.1 The
development systems were standard PCs upon which the WinCE Platform
builder had been installed. Using the development platform, students could
develop applications, examine header files, download software to the target,
and run a debugger. Each team was provided with a development and a
target platform.

So that students could understand system internals, two books were used
as assigned reading: Inside Windows NT [13] and Inside Windows CE [7].
The former provided students with insight regarding the design and
construction of the vendor's flagship operating system. Our initial hypothesis
was that parts of the WinCE operating system were intentionally designed
for the smaller platform, but that certain subsystems would be lifted directly
from the main product. The latter book provided a rather colloquial account
of some of the design decisions that went into the creation of the WinCE
operating system.

4.3 Approach

During the first week of class the goals for the penetration study were
established. Since our student teams lacked experience in many areas, it

1 WinCE is not designed to be plug-and-play. The operating system must be compiled with
the exact configuration needed to run on the target platform. The default target platform is
the CE PC

12 Cynthia E. Irvine and Timothy Levin

would have been unrealistic to have expected them to do more than scratch
the surface of the target system in the twelve-week quarter we had for the
entire course. Only a team with considerable knowledge and experience in
penetration testing, an understanding of operating systems, and a deep
appreciation for security engineering principles could have conducted a truly
meaningful penetration exercise in the allotted time.

At the start of the course, some students considered complete reverse
engineering of the target system and were dissuaded from this approach.
Despite considerable eagerness to start attacking the systems, students were
not permitted to begin the actual penetration tests during the first several
weeks of class. Instead, they were required to thoroughly study the target
system by reading as much material as possible. This reading included not
only the books and papers provided by the instructor but materials the
students found on their own. During this period students were attending
lectures where the principles of security engineering were being described.

Each student prepared a presentation on his or her subsystem and
presented it to the team. This proved to be the most intense period of the
course for the instructor. Because of the students' inexperience, and for
student assessment purposes, the instructor attended every presentation and
helped to guide the discussion of the system component. All of the
presentations were completed in a period of approximately two weeks and
most were scheduled at times outside of both regular class and laboratory
hours. With a class of seventeen students each of whom gave a one to two
hour lecture to a team, the instructor had to block out most other activities in
order to attend these brainstorming sessions.

After the student presentations, the students were allowed to proceed at
will. Many had subsequent discussions with the instructor regarding fine
points associated with particular system features. In the meantime, normal
class lectures on secure system engineering proceeded.

4.4 Student Assessment

Students were assessed based upon the criteria shown in Table 2. Several
elements in the table are traditional, however those associated with the
laboratory are unique and require additional clarification.

Table 2. Student Assessment Criteria
Component Portion of Grade
Class participation and demonstration of Insight 10%
Teamwork assignments 20%
Individual work assignment (OS component presentation and FHS tests) 20%
Midterm Examination 25%
Team Final Report 25%

Teaching Security Engineering Principles 13

Each student was required to make a presentation on the OS subsystem
that he or she had been assigned. The presentations usually lasted between
one and two hours. Other team members asked questions during the
presentation and the instructor asked questions to guide the discussion.

The penetration study report produced by each team constituted a major
portion of each student's grade. Three different grades were given to each
student based upon the final report. First each students wrote individual
sections describing how they carried out their service roles and how that
effort contributed to the overall success of the team. Second, they had to
produce a subsystem report describing aspects of the penetration analysis as
it applied to their subsystem. For example, they might give a brief overview
of the subsystem followed by detailed discussions of the flaw hypotheses
applicable to that subsystem. This would include references to the flaw
hypothesis sheets as well as test results related to hypotheses. In the case of
beaded attacks, students wrote a coordinated section describing how
interaction between subsystems or sequential use of those subsystems could
result in a successful penetration. Finally, the general quality of the report
was graded. Although students were prohibited from assisting each other on
their subsystem and service assignments, the application of a grade to the
report as a whole motivated students to ensure that their team mates were
producing high quality results in the penetration exercise. In a sense, this
overall grade truly reflects the real world: when a team is involved in an
engineering project, the project either succeeds or fails as a whole and all
team members either share in the benefits of a job well done or the
implications of a poorly executed project.

5. DISCUSSION AND CONCLUSIONS

This course has been taught twice using a penetration exercise as the
laboratory component. In each instance the students remained interested in
both the classroom and laboratory material. The lectures taught them the
principles that the designers of the target system had neglected to observe.
Discovery of flaws based upon a lack of principle-based security engineering
validated the students' understanding of those principles and helped to
demonstrate that secure systems must be achieved constructively.

Each time the course has been taught, students have been asked for
recommendations for improvement. Almost unanimously they have
suggested that the course is too short. They feel that during the twelve week
span of the class, they are only beginning to appreciate the system and are
only beginning to understand various approaches that could be taken by their

14 Cynthia E. Irvine and Timothy Levin

penetration teams. Many students did comment that they felt the course
helped them to understand how the concepts that had been presented to them
in their operating systems class were applied in real systems. Because the
target system was different from those studied in traditional operating
systems classes, they also noted that they were beginning to see a number of
similarities among all of the systems.

The Windows CE operating system does not provide any significant
mechanism for its own self protection. This design approach renders the
system highly vulnerable to attack. A benefit of this condition is that the
students are quickly validated in their penetration exercise. A drawback is
that the teams were not confronted with a system designed to create isolation
domains for individual processes and to protect the underlying system from
tampering by applications.

To summarize, a course in secure systems design and implementation
should be based upon fundamental principles. Using those principles as a
framework, it is possible to develop exciting laboratory-based penetration
exercises using the Flaw Hypothesis Methodology as an organizing
technique.

ACKNOWLEDGEMENTS

The authors wish to thank the students who participated in our classes
and, in particular, Barbara Pereira, whose efforts to set up and administer the
CE PCs contributed significantly to the success of the penetration exercise.
We also gratefully acknowledge the support of this work by the United
States Navy (N643) and the Defense Information Systems Agency.

REFERENCES

[1] J.P. Anderson. Computer Security Technology Planning Study. Technical Report ESD-
TR-73-51, Air Force Electronic Systems Division, Hanscom AFB, Bedford, MA, 1972.
(Also available as Vol. I, DITCAD-758206. Vol. II, DITCAD-772806).

[2] R. Anderson and M. Kahn. Tamper Resistance - A Cautionary Note. In Second USENIX
Workshop on Electronic Commerce, pages 1-11, Oakland, CA, November 1996.

[3] C. Attanasio, P. Markenstein, and R. J. Phillips. Penetrating an Operating System: A Study
of VM/370 Integrity. IBM Systems Journal, 15(1):102-116, 1976.

[4] R. Bisbey and D. Hollingsworth. Protection analysis: Final Report. Technical Report
ISI/SR-78-13, Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA,
May 1978. ARPA ORDER NO. 2223.

[5] E. W. Dijkstra. The Structure of the “THE” Multiprogramming System. Communications
of the A. C. M., 11(5):341-346, 1968.

Teaching Security Engineering Principles 15

[6] R. R. Linde. Operating System Penetration. In National Computer Conference, pages 361-
367, 1975.

[7] J. Murray. Inside Microsoft Windows CE. Microsoft Press, Redmond, WA, 1998.
[8] D. L. Parnas, On the Criteria to be Used in Decomposing Systems into Modules.

Communications of the A. C. M., 15(12):1053-1058, 1972.
[9] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer Systems.

Proceedings of the IEEE, 63(9): 1278-1308, 1975.
[10] M. D. Schroeder, D. D. Clark, and J. H. Saltzer. The Multics Kernel Design Project.

Proceedings of the Sixth A. C. M. Symposium on Operating System Principles, pages 43-
56, November 1977.

[11] O. Sibert, P. A. Porras, and R. Lindell. The Intel 80x86 Processor Architecture: Pitfalls
for Secure Systems. In Proceedings 1995 IEEE Symposium on Security and Privacy,
pages 211-222, Oakland, CA, May 1995. IEEE Computer Society Press.

[12] S. Smith and S. Weingart. Building a High-Performance, Programmable Secure
Coprocessor. Computer Networks, 31: 831-860, November 1999.

[13] D. A. Solomon, Inside Windows NT. Microsoft Press, Redmond, WA, Second Edition,
1998.

[14] C. Weissman, Security Penetration Testing Guideline, Naval Research Laboratory,
Unisys Government Systems, 12010 Sunrise Vally Drive, Reston, VA, tm - 8889/000/01,
October 1993. Prepared under contract to NRL.

[15] C. Weissman, Penetration Testing. In Abrams, Jajodia, and Podell, editors. Information
Security: An Integrated Collection of Essays, pages 269-296. IEEE Computer Society
Press, Los Alamitos, CA, 1995.

